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EXACT DYNAMICALLY CONVERGENT CALCULATIONS OF THE

FREQUENCY-DEPENDENT DENSITY RESPONSE FUNCTION
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ABSTRACT

A general expression for the response function is derived

by the method of recurrence relations. Memory effects appear as

corrections to the dynamic RPA form. The dynamic structure for

the 3d electron gas is calculated to third order and compared

with Al data at a large wave vector. Also shown is the dynamic local-

field term.
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The dynamic response in strongly interacting homogeneous

many-fermion systems has drawn considerable attention recently.

Let such a many-body system be described by H = Ho + V, where

Ho represents the kinetic energy and V the interaction energy,

and the response in the system by the response function Xk(w),

where k and w are, respectively, wave vector and frequency (Q=l).

It is well known that the response function may be put in the

form

Xk(w) = Xk (w) /(l + Ak(w)Xk (W))

where Xk(o) (wl is the response function due to Ho and Ak(w) some

unknown function of V. Various dynamic RPA theories are equivalent

to taking Ak()=Ak(0)-dLk.2 For example, Ak = vk gives the simple

RPA where vk is the two-body interaction, and Ak = vk(1 - GO

gives the generalized RPA where Gk is a local field term effective

over the Thomas-Fermi length.3 '4 There are large numbers of RPA

based studies and they have been routinely used to interpret-

experiments.
5

The dynamic RPA's, however, can break down especially

in the regime of metallic densities at large wave vectors. Clearly,

one needs to restore the frequency dependence e.g., Ak(w)= vk (1 - Gk(w

Several people have obtained asymptotic conditions for Gk(O ) .6-9

Otherwise, there are at present no exact general expressions known.
For a 3d Coulomb gas Devreese et al 0 and Holas et al have calcu-

lated Gk( ) by some approximate techniques. Unfortunately, they

find in their calculations several unphysical divergences. This

sort of situation has limited our understanding of the dynamic

structure of metals at large wave vectors. In particular, whether

SO4= 1
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the observed fine structure arises from multi-pair excitations

or from some other strong correlations remain unresolved.
4

In this Letter, we obtain a general expression for Ak(w) by the

method of recurrence reltions12 and perform exact dynamically-

convergent calculations based on it. Our results are compared

with Al data.

The time evolution of the density fuctuation operator pk

may be given an orthogonal expansion viz., pk(t) = oat f

where { fj } forms a complete set of basis vectors spanning the

d-dimensional Hilbert space of p and a Is are autocorrelation

functions. There exist recurrence relations RRI and RRII,

respectively, for f Vs and a 's :

fV+1 V + AV fV-1 (2)

AV+, av+t) = -a V ( t) + avl( (3)

where 0 .5 v _S d-l, fV= i[H, f V], aV= daV/dt, A = (fV'fV)/(fv-l'fV-1)

where the inner product means the Kubo scalar product and by

definition f-,=0, a_l = 0 and A0 = 1. According to the method

of recurrence relations, one obtains the basis vectors f V's by

RRI (2) from which the recurrants AV's. One can then deduce the

autocorrelation functions a 's by RRII(3) and obtain the time

evolution of Pk 13

If we choose fo = Pk' then by linear response theory

ao(t) = (Pk(t), Pk)/(Pk, k ) , which is the relaxation function,

and Alal(t)=Xk(t)/Xk, where Xk = (pk'k)' If v=O in (/, we get

A1 a1(t) = -a 0 ( t) . (4a)

By applying the Laplace transform operator T and with a (t=0) - 1,
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we obtain

ai(z) - 1 - z ao(Z (4b)

where a (z = T[av (t)]. Hence, from (4b),

ao (z) = (z + Alb1 (z))- (5)

where bl(Z = a1 (z}/a(Z). Now combining (4b) and (5) and using

the identity AIal(z) = X(z)/x, suppressing k-dependence altogether,

we get

~Ab (z)×~X = z+lb(}(6)

Since eq. (7) is valid for any Hermitian model, it also

4' applies to H (ideal version). Now consider AI = (flfl )/(fo'f
014.

Since fl fo from (2), we have fl = i[Hpk] = i[Hok 1 ()

Hence,

(0)1.;* . 1  (o)
A l (7)
A1

We divide (6) by its ideal version and obtain

x (z ) ( 1 (8a)

10z bz z +Ab )

1 . (8b)

1 + A(z)X ()

M9.
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Observe that (8b) is in the form of (1). By using the ideal

version of (6), we find from (8a,b) the desired expression:

A(z)= [(X) -1 X(o)-l] + f -z  - (b~oCz)) 1

S A + X(z). (9)

The first bracketed term A is z-independent. Thus, the RPA

theories are valid, i.e., A(z) - A, if and only if bl (z) - b ( ° ) ( z)

We shall now examine the z-dependent part. Earlier,

b 1 (z) was introduced in place of a1 (z)/a 0 (Z). According to the

12method of recurrence relations there is actually a whole family

of b(t) = -l[bV(z)], l< V <d-l,which define the time evolution
d-l

of the generalized random force Fk for k as Fk(t) =.I b (t) f

The random force lies in a linear manifold of the Hibert space

of Pk* The autocorrelation functions b 's, sometimes referred

* to as the memory functions, also satisfy a recurrence relation:

AV+b V+l(t) = -b(t) + b_ (t) (10)

where b ot) 0 and l<v<d-l. That is, for example,
0

bl(t) = b1(A 2 ,A 3 ,....,Adl; t) . (11)

Hence, (o)to ot le rzc 1'.0of,

h-. Hence, if A V6 , 2 -9v x d-l, memory effects/,are always present

in the response function and are manifested through z dependence

in A(z). 1 5

The recurrants AV s, which are relative norms of the basis

vectors, are model-dependent. They are basic elements of the

dynamic structure and their form shapes the time evolution. In
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some special physical regimes of certain many-body models they

can be calculated to any order and one can use them to obtain

the memory function from RRII (10) 13 For noninteracting systems

9' : e.g., an ideal 3d electron gas, the recurrants are in effect

known to all orders at T = 0 since Xk( (z=iw) is analytically

given in the ground state. But for interacting systems generally,

only the first few orders of the recurrants have been accurately.

calculated presently. Hence, one cannot obtain their memory

function by (10) and one cannot use the general expression (9)

to explicitly calculate e.g., Im Xk(w) for metal densities at

large wave vectors. We propose here a technique by which one

can use (9) to calculate A(z) term-by-term up to the available

order of the recurrants given that the "ideal" recurrants are

known to all orders.

From (9) and (11) we see that

AA ({Aj; {A(o;z), v 2t 2 (12)

assuming d = -. Hence we can write

A = lim A

n (13)

where

" (A2 "''tn (A ) ; z) . (14)

Imp The process of replacing A by X n has the following significance:

If A is used in place of X in (9), the resulting X(z) satisfies

the frequency moment sum rules exactly up to and including the

2n+l st. It satisfies the higher moments to the accuracy of

the substitution of Am by AM,(O) m>n+l.16

..m m.
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By this process one can obtain an expression for the response

function in terms of the recurrants which is exact to a given

order. One can continue this process to the highest available

recurrant. An infinite-order expression evidently is equivalent

to an exact expression for the response function.

Using (9) and RRII, we can systematically obtain An e.g.

X 0 (15)

X(°) A2 =n2Q(z)

X(0) = - T 3 R(z))Q(z)/(l + n3 R(z))

etc. where n. A /A -l, j = 2,3
-(ok( ) () .2/.(O)- •=

0(z) = X.- z 

R(z) =1 - y Q(z), Y =1 /2

Observe that A * X, gives the generalized RPA. For k x kF, where

kF is the Fermi vector, multipair excitations exist which are

contained in A2A3 etc. They can, therefore, contribute to the

response function via frequency dependence beyond first order.

The convergence of our term-by-term calculations should be

relatively rapid since our procedure uses infinite continued

fractions at all stages which are known to give good convergence.
17

Finite order calculations are meaningful if X(° (zY7 0.

To illustrate our technique, we calculate the dynamic

structure factor Sk(W)=--r Im x(z=iw) for the 3d electron gas

to third order, the highest order possible based on the presently

available recurrants which are A1A2a3. For our calculations we
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set k = 1.6 k and r = 2.0 (cf. Al r = 2.07). For these values
F s s

we find: n2 = 0.1297, n 3 = 0.0364, and Y = 0.5619.

Shown in.Fig. 1A is the first-order corresponding to the

generalized RPA (dotted line). It shows almost no fine structure.

The second order (dash-dot line) and the third-order (solid line)

begin to show some structure. The calculated amplitudes are all

absolute. Observe that in our finite order calculations Sk()=0

for w > 5.76 zF . 18 In Fig. IB the third-order dynamic structure

(solid line) is compared with the simple RPA (dotted line) and

Al data (dashed line) .9 The experimental amplitude is adjusted

to coincide with our third-order calculated one. The simple

RPA-calculated amplitude is absolute. We observe that the third-

order calculated structure factor shows some resemblance to the

experimental curve especially in the shoulder. The peak position

is much closer to the experimental peak position than that of

the simple RPA.20  MC

Using the definition X-(w)= vk Gk( ) )one can also extract

the corresponding frequency-dependent local field term Gk(w).

These results are shown in Fig. 2. The first-order (dotted line)

is absent in Im Gk( )since ).I = 0. The second-order (dash-dot

lines) and third order (solid lines) are well-behaved, containing

no infinities. In Re Gk( )there are cusp-like peaks at w

and 4-s It is interesting to note that Devreese et allO P/jaCi

encountered divergences in their calculation of Gk( )at ate!

these frequencies.
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Figure Captions

1. Dynamic structure vs frequency. A. first-order (dotted),

second-order (dash-dot), third-order (solid). B. experimental

(dash), simple RPA (dotted), third-order (solid). E Fermi

energy.

2. Dynamic local field correction vs frequency. First-order

(dotted), second-order (dash-dot), third-order (solid).

CF Fermi energy.
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